Optimal Dual Frames for Probabilistic Erasures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal dual fusion frames for probabilistic erasures

For any fixed fusion frame, its optimal dual fusion frames for reconstruction is studied in case of erasures of subspaces. It is considered that a probability distribution of erasure of subspaces is given and that a blind reconstruction procedure is used, where the erased data are set to zero. It is proved that there are always optimal duals. Sufficient conditions for the canonical dual fusion ...

متن کامل

Frames, Graphs and Erasures

Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest possible error when up to two frame coefficients are set to zero. Here, we consider various numerical measures for the reconstruction error associated with a frame when an arbitrary number...

متن کامل

Uniform Tight Frames with Erasures

Uniform tight frames have been shown to be useful for robust data trans mission The losses in the network are modeled as erasures of transmitted frame coe cients We give the rst systematic study of the general class of uniform tight frames and their properties We search for e cient con structions of such frames We show that the only uniform tight frames with the group structure and one or two g...

متن کامل

On dual shearlet frames

In This paper, we give a necessary condition for function in $L^2$ with its dual to generate a dual shearlet tight frame with respect to admissibility.

متن کامل

Dihedral Group Frames Which Are Maximally Robust to Erasures

Let n be a natural number larger than two. Let D2n = ⟨r, s ∶ r = s = e, srs = r⟩ be the Dihedral group, and κ an n-dimensional unitary representation of D2n acting in C as follows. (κ(r)v)(j) = v((j−1) mod n) and (κ(s)v)(j) = v((n − j) mod n) for v = (v0,⋯, vn−1) ∈ C. For any representation which is unitarily equivalent to κ, we prove that when n is prime there exists a Zariski open subset E of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2018.2886304